Pseudospin, Spin, and Coulomb Dirac-symmetries: Doublet Structure and Supersymmetric Patterns

نویسنده

  • A. Leviatan
چکیده

The Dirac equation serves as the basis for the relativistic description of atoms, nuclei and hadrons. In atoms the relevant potentials felt by the electron are Coulombic vector potentials. A Dirac Hamiltonian with a Coulomb potential exhibits a finestructure spectrum with characteristic two-fold degeneracy. Relativistic mean fields in nuclei generated by meson exchanges , and quark confinement in hadrons 2 necessitate a mixture of Lorentz vector and scalar potentials. Recently symmetries of Dirac Hamiltonians with such Lorentz structure have been shown to be relevant for explaining the observed degeneracies of certain shell-model orbitals in nuclei (“pseudospin doublets”) , and the absence of quark spin-orbit splitting (“spin doublets”) , as observed in heavy-light quark mesons. The degenerate doublets associated with the relativistic Coulomb, pseudospin, and spin symmetries are shown in Table 1. In the current contribution we show 5 that the degeneracy patterns and relations between wave functions implied by such relativistic symmetries resemble

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supersymmetric structure in the Dirac equation with cylindrically-deformed potentials

The Dirac equation plays a key role in microscopic descriptions of many-fermion systems, employing covariant density functional theory and the relativistic mean-field approach. In application to nuclei and hadrons, the required Dirac mean-field Hamiltonian involves a mixture of Lorentz vector and scalar potentials. Recently, symmetries of Dirac Hamiltonians with such Lorentz structure were show...

متن کامل

The Energy Eigenvalues of the Dirac Equation with the Modified Eckart and the Modified Deformed Hylleraas Potentials by Shape Invariance Approach

By using the supersymmetry quantum mechanics method, we approximately solve the Dirac equation for the modiˇed Eckart and the modiˇed deformed Hylleraas potentials including the Coulomb-like tensor potential under spin and pseudospin symmetry. We obtain approximate energy eigenvalues and the corresponding wave functions in terms of the Jacobi polynomial under the spin and pseudospin symmetries ...

متن کامل

Relativistic Pseudospin Symmetry as a Supersymmetric Pattern in Nuclei

The doublet structure (for n ≥ 1) is expressed in terms of a “pseudo” orbital angular momentum l̃ = l + 1 and “pseudo” spin, s̃ = 1/2, coupled to j = l̃ − 1/2 and j = l̃ + 1/2. For example, [ns1/2, (n − 1) d3/2] will have l̃ = 1, etc. The states in Eq. (1) involve only normal-parity shellmodel orbitals. The states (n = 0, l, j = l + 1/2), with aligned spin and no nodes, are not part of a doublet. Th...

متن کامل

Solutions of the spatially-dependent mass Dirac equation with the spin and pseudospin symmetry for the Coulomb-like potential

We study the effect of spatially dependent mass function over the solution of the Dirac equation with the Coulomb potential in the (3 + 1)-dimensions for any arbitrary spin-orbit κ state. In the framework of the spin and pseudospin symmetry concept, the analytic bound state energy eigenvalues and the corresponding upper and lower two-component spinors of the two Dirac particles are obtained by ...

متن کامل

Relativistic symmetries in Yukawa-type interactions with Coulomb-like tensor

Keywords: Dirac equation Yukawa potential Coulomb-like tensor potential Spin and p-spin symmetry Nikiforov–Uvarov method a b s t r a c t This study presents the solutions of the Dirac equation with a new suggested Yukawa-type potential for any spin–orbit quantum number j interacting with a Coulomb-like tensor interaction. In the presence of spin and pseudospin (p-spin) symmetries, the approxima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004